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Abstract—In this work I propose a comparator-based 

control algorithm for a magnetically levitated motor, either 

induction or synchronous. The motor is two-channel, with a 

dipolar as well as a quadrupolar component. Each channel in 

the stator is supplied by a two-phase three-level or three-phase 

two-level voltage source inverter. The motor torque output is 

regulated via the dipolar channel, using the standard direct 

torque control protocols (DTC). Levitation and confinement of 

the rotor are achieved through the quadrupolar channel which 

is regulated by a novel two-limit control strategy, similar to DTC 

in philosophy and implementation. In the basic realization of 

this strategy, the measured parameters are the rotor 

displacements and the currents in the stator phases. A series of 

binary and ternary comparisons leads to a switching table which 

controls the states of the quadrupolar inverters. Simulation 

results show that this strategy leads to levitation and 

stabilization of the rotor. We then discuss a realization of the 

control strategy in which the explicit rotor position and velocity 

measurements are eliminated altogether and four laser beams 

fixed to the stator are used instead. The rotor bypasses or 

intercepts each beam depending on its displacement, and the 

states of the four beams are processed to generate the inverter 

switching table. Simulation results demonstrate the effectivity of 

this implementation, thus confirming the validity of the 

proposed control scheme.  

Keywords—Comparator control, Two-channel motor, 

Switching table, Voltage source inverter, Binary position sensor 

I. INTRODUCTION 

Direct torque control (DTC) of an induction motor was 
invented by Isao Takahashi and Toshihiko Noguchi in 1986 
[1]. Two years later, a similar strategy called direct self control 
was proposed by Depenbrock [2]. DTC was the most 
significant landmark in the history of control of induction 
motors, representing a vast improvement over the existing 
standard of field-oriented control (FOC) [3], discussed in 
detail in Reference [4]. When DTC was later extended to 
permanent magnet synchronous motors [5,6] it again brought 
on a similar revolution on account of the simpler and more 
robust control architecture and apparatus. The superiority of 
DTC to the previously existing methods can also be 
understood clearly from Reference [7]. 

A control problem which is very relevant in today’s age is that 
of magnetic levitation. Electromagnetic levitation of an object 
is rendered difficult by Earnshaw’s theorem [8]. Magnetic 
bearings (levitators for rotating objects) have to overcome this 
theorem to be effective. There are two types of magnetic 
bearings in use – active and passive. In passive magnetic 
bearings [9-14] there is no control involved. These bearings 
use either superconducting materials or electromagnetic 

induction phenomena. The drawbacks with them are that 
superconductors are available only at cryogenic temperatures 
while designs involving eddy currents alone often do not 
generate a stiffness proportional to their size. 

In active magnetic bearings, control is used to regulate the 
position of the rotor. A subset of active magnetic bearings is 
the bearingless (or self-bearing) motor which integrates 
rotation and levitation – this is the focus of the present Article. 
References [15,16] have proposed a novel design of a 
permanent magnet motor with controlled axial force. A 
similar design may be found in Reference [17]. References 
[18,19] on the other hand propose an architecture with radial 
control. The latter features a six-pole permanent magnet on the 
rotor and two sets of windings on the stator – a single phase 
six-pole winding and a separate three-phase four-pole one. A 
similar approach with different polarities has been 
demonstrated in Reference [20]. In References [21,22] the two 
separate windings have been integrated into one structure. 

In all these prior works [15-22], we can see a large variety in 
the winding structure. The control algorithm used for the rotor 
position is however fundamentally the same. The position is 
measured and the stator currents required to generate a 
restoring force are calculated in the synchronously rotating 
d,q,o basis. These are then converted to the stator a,b,c basis 
and synthesized using an inverter. This strategy is very similar 
to FOC for the conventional induction motor. A typical block 
diagram of these strategies, taken from Reference [19], is 
reproduced in Fig. 1 (next page). The similarities with the 
block diagram for FOC [4] are noteworthy. 

In this paper I will present the equivalent of DTC for a 
levitating motor. The stator consists of two concentric 
windings, one dipolar and one quadrupolar, and the rotor 
levitates inside the stator. Each winding is controlled by a 
three-phase two-level or two-phase three-level [23] voltage 
source inverter. The proposed control algorithm works 
entirely in the stator frame, thereby eliminating the need for 
online coordinate transformation. The processing of the 
displacements and forces is done through comparators and the 
selection of the voltage vector of each polarity is achieved via 
a switching table. 

A knock-on effect of the new strategy is that an 
implementation is possible where the rotor position sensor is 
substituted by a set of laser beams which the rotor intercepts 
if it is displaced. The beams are received by detectors which 
turn ON if receiving the beam and OFF otherwise – the states 
of the detectors can be directly used to generate the inverter 
switching table, as will be explained presently. Thus, we can 
bypass the robustness and accuracy issues of position sensors 
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[24,25] while also circumventing the complexity of sensorless 
methods [26,27]. 

 

II. MOTOR DYNAMIC MODEL AND SOLUTION 

The dynamic model of the levitating motor is presented and 
solved in this Section. The induction motor is taken as an 
example since its dynamics is more involved. We consider a 
cylindrical, two-dimensional motor in cylindrical coordinates 
ρ,θ,z. Origin is taken to be at the centre of the stator. Cartesian 
coordinates x and y are also defined with respect to this origin, 
following conventional coordinate notations. The entire 
analysis will be carried out in stator frame coordinates, so the 
electrical d and q axes will also be defined in that frame. All 
currents flow along the z-axis (axis of symmetry) and are 
functions of θ. As already mentioned, the motor is a two-
channel one with dipolar and quadrupolar channels. The 
dipolar current has the form cos θ and sin θ while the quadru-
polar current has the form cos 2θ and sin 2θ. We shall assume 
that only the stator can support a quadrupolar current – this 
component can be eliminated from the rotor by winding it 
such that the 2θ harmonic of its current is identically zero. 

The evolution equations in space phasor form for the dipole 
channel are the usual [1,4] 

( ) ( )j j1 1 1 1 1 1 1 1' 1 ' 0r r r r s r sτ τ ω δ τ ω+ − + − =i i i i , (1a) 

1 1 1 1 1 1 1' ' /s s s r sLτ δ+ + =i i i V  ,  (1b) 

where ir1 denotes the dipolar rotor current phasor, is1 denotes 
the dipolar stator current phasor, τr1 = Lr1/Rr1 is the rotor time 
constant, τs1 = Ls1/Rs1 is the stator time constant and δ1 is a 
constant between zero and unity. Note that the subscripts r and 
s denote rotor and stator while subscripts 1 and 2 denote the 
dipolar and quadrupolar component. The motor torque is  

( )1 1 1 1 1r d s q s d r qC i i i i = −   ,   (2) 

where C1 is a proportionality constant. 

The quadrupolar stator current satisfies an equation similar to 
(1b). Although the rotor does not carry a quadrupolar current, 
it turns out that the displacement of a purely dipolar rotor from 
the origin generates a non-zero quadrupole moment relative to 
the stator. If X and Y be the coordinates of the centre of the 
rotor relative to the origin, and ir1d and ir1q be the direct and 

quadrature components of ir1, then the effective quadrupolar 

current of the rotor is eff eff
2 2cos2 sin2r d r qi iθ θ+ , where 

( )eff
2 12/r rr=i Wi   ,  (3) 

with W being the space phasor X+jY and r the rotor radius.  

Using the previous relations, the quadrupolar stator current 
dynamics can be obtained in space phasor form as 

( )2 22
2 2 2 1 1

2

2
' 's

s s s r r

sL r

δ τ
τ + = − +

V
i i Wi Wi   ,  (4) 

where the parameters have similar meanings as in (1). The 
overhead dot denotes time derivative for all variables other 
than i, where it creates confusion. The force on a dipolar rotor 
inside the stator’s quadrupolar magnetic field is 

( ) ( )2 1 2 1 2 1 2 2 1ˆ ˆr d s d r q s q r d s q s d r qC i i i i i i i i = + + −
 

F x y   ,  (5) 

where C2 is some proportionality constant. The force is 
independent of the position of the rotor. It can be shown that 
the displacement of the rotor generates a correction to the 
torque over and above (2); this correction is  

( ) ( )corr 1 1 2 2 1 1 2 1 2r d s q s d r q r d s d r q s q

X Y
C i i i i i i i i

r r

 
 = − + + 

 
  . 

(6) 

The final equations in the model are the mechanical equations 
of the rotor : 

xmX X Fγ+ =  ,   (7a) 

ymY Y F gγ+ = −  ,  (7b) 

where m is the rotor mass, γ is a damping constant and g is the 

acceleration due to gravity (we have taken it to be along −y-
direction without loss of generality). Equations (1) to (7) make 
up the dynamic model of the bearingless motor.   

We now solve these equations. In any DTC-style control 
algorithm, the inverter has an extremely small switching 
period T, during which time the applied voltage vector is a 
constant. T is taken to be considerably smaller than all other 
time-scales involved in the dynamics, because of which the 
solutions of the differential equations (1) to (7) may be Taylor 
expanded to first order in T before being reported, and 

 
Figure 1 : Block diagram of bearingless motor taken from Reference [19]. 

 



subsequently used. To solve the coupled system (1), the 
standard procedure is to make the resistanceless stator 
approximation i.e. to eliminate the term is1 from the left hand 
side (LHS) of (1b). This done, we introduce the stator flux, 
ψs1 = is1+δ1ir1, as a new variable. With this substitution, and 
setting τr1 = 1 and Ls1 = 1, (1) and (2) read as 

1 1s =ψ V  ,  (8a) 

( ) ( )j j1 1 1 1 1'r r s sλ ω δ ω+ − = − +i i ψ ψ   ,  (8b) 

( )1 1 1 1 1 corrr d s q s d r qC i iψ ψ = − +    ,  (8c) 

where λ = 1/(1−δ1
2). If ψ0 and i10 be the values of ψs1 and ir1 at 

the start of a switching interval, and V10 be the dipolar voltage 
vector held during the interval, then the flux and current at the 
end of the interval are given by  

1 0 10( )T T+ = +ψ ψ V   ,  (9a) 

( )j j1 10 10 1 10 1 0( )r T T λ ω δ δ ω= + − + − +  i i i V ψ  .  (9b) 

The change in torque during the interval, computed basis these 
expressions, agrees with what has been found in Reference [1] 
from a different solution process; it is not reproduced here. 

The resistanceless stator approximation is also made on (4). If 
V20 be the quadrupolar voltage vector held during the 
switching interval, i20 the starting value of quadrupolar stator 

current, W0 the starting displacement phasor, 0W the starting 

velocity phasor and i10’ the time derivative of ir1 at the start of 
the interval, then is2 at the end of the interval is given by  

( )2
2 20 20 0 10 0 10

2

( ) 's

s

T
T

r

δ

τ

 
= + − + 

 
i i V W i W i   .  (10) 

We now use (5) together with (9b) and (10) to calculate the 
change in Fx and Fy during the interval. When the vector V20 
is zero, the expression on the right hand side (RHS) of (10) is 
difficult to evaluate and does not lend insight into the 
dynamics. When V20 is non-zero however, we can safely 
assume that it far exceeds the terms involving W/r since that 
is a small quantity. Making this assumption, we drop the 
second term in the coefficient of T in the RHS of (10). This 
now leads to the following : 

( ) ( )

( ) ( )

( )

0

10 20 10 20 10 20 20 10

1 20 10 20 10 1 0 20 20 0

10 20 10 20

( )

2

x x

d d q q d q d q

d d q q d q d q

d d q q

F T F

i i i i i i i i

T i V i V i i

i V i V

λ ω

δ δ ω ψ ψ

= +

 − + + − −
 
 + + − +
 
 +
 

 . (11) 

Similarly,  

( ) ( )

( ) ( )

( )

0

20 10 10 20 10 10 20 20

1 20 10 10 20 1 0 20 0 20

10 20 20 10

( )

2

y y

d q d q d q d q

d q d q d d q q

d q d q

F T F

i i i i i i i i

T i V V i i i

i V V i

λ ω

δ δ ω ψ ψ

= +

 − − + +
 
 − − + +
 
 −
 

 . (12) 

We shall interpret these expressions later. Finally, we solve 
the system (7). To linear order in T we have  

0 0( ) xX T X v T= +   ,  (13a) 

0
0( ) x x

x x

F v
v T v T

m

γ− 
= +  

 
  ,  (13b) 

0 0( ) yy T Y v T= +    ,  (13c) 

0
0( )

y y
y y

F v g
v T v T

m

γ− − 
= +  

 
   . (13d) 

Basis these expressions, we shall now devise the proposed 
control strategy.   

III. THE CONTROL ALGORITHM 

Here we use the mathematical results obtained above to 

formulate the control algorithm at the heart of the proposed 

magnetic levitator. We consider the two-phase stator 

construction with four non-trivial dipolar and quadrupolar 

voltage vectors available – these are along the positive and 

negative d and q axes. This enables a more compact 

representation of the algorithm with no conceptual 

differences from the three-phase case. The dipole channel is 

controlled via standard DTC as in Reference [1], with suitable 

modifications to account for a two-phase inverter. It is here 

that we exploit the absence of quadrupolar windings on the 

rotor – those would have generated an extra contribution to 

the torque, thus complicating the classical DTC algorithm 

unnecessarily. 

The control of the displacements X and Y is of course the 

novelty of the present paper. For a robust control similar in 

style to DTC, we need everything to be based on comparisons 

alone – there can be no PID and similar controllers. We start 

from the list of quantities that need to be measured. The first 

quantity is the displacement (X,Y) of the centre of the rotor – 

an obvious requirement since we want to control it. It can be 

measured either by electrical, optical or acoustic sensor. 

Thereafter, we need the applied forces and the quadrantal 

position of ir1 (this requirement shall be explained presently). 

Since the rotor levitates, we would like to minimize 

measurements on it. Instead we measure the currents in all the 

stator phases, giving the phasor is1; subtracting this from ψs1 

(whose value is known from the classical DTC algorithm) 

gives ir1. We note that measuring the rotor angular position in 

a conventional permanent magnet synchronous (or brushless 

dc) motor is very standard practice – since the angle sensors 

are not attached to the rotor, they are suitable for the levitating 

rotor also. The current measurement also gives us is2, and we 

can then estimate the electromagnetic forces using (5).  

We define tolerance displacements xtol and ytol (likely the 

same value but not necessarily so). Then, if X > xtol, we define 

the reference value of Fx to be a constant −Fset. If X < −xtol, 

then we define the reference Fx,ref to be the constant +Fset. If 

X lies in between the negative and positive tolerances, then 

Fx,ref is zero. In a similar manner, we define reference values 

for Fy.  

Equation (5) tells us that the force arises from the interaction 

of is2 and ir1. If we had a current source inverter at hand which 

could have synthesized arbitrary quadrupolar stator currents, 

and hence the reference forces, then we would have been 

done. However, that is not the case. A voltage source inverter 

can only cause a change in current and hence an increase or 

decrease in force. Hence, we now calculate the disparity 



between the actual forces (estimated as described above) and 

the reference values. Let Fx,err = Fx,ref − Fx and Fy,err = Fy,ref − Fy. 

Let the indicator variable sx have the value 1 if Fx,err is positive 

i.e. sx = 1 denotes a required increase in Fx, and similarly let 

sx = 2 denote a required decrease in Fx. Analogously, let the 

indicator variable sy = 1 and sy = 2 denote required increases 

and decreases in Fy.  

We now analyse (11,12). From the former equation we can 

see that the change in Fx during the switching interval 

contains five terms, among which the first four are 

predetermined by the state of the motor at the beginning of 

the interval. Only the last term depends on the quadrupolar 

voltage vector selected during the interval. This term can be 

expressed as the “dot product” of the phasors i10 and V20. If 

the voltage vector V20 is chosen such that this dot product is 

positive then there will be an increase in Fx, provided that the 

other terms are of the right size and sign (if they are not, then 

we will never be able to increase Fx and the setpoint Fset has 

been prescribed incorrectly relative to the motor parameters). 

Similarly, if V20 is chosen so that this dot product is negative, 

then there will be a decrease in Fx. Analogously, (12) shows 

that the increase and decrease in Fy is controlled by the entity 

i10dV20q − V20di10q, which can be interpreted graphically as the 

“cross product” of the phasors i10 and V20. 

This analysis implies that the choice of voltage vector 

depends on the quadrantal position of the vector ir1 relative to 

the d-q basis. If ir1 is in the first quadrant then an increase in 

both Fx and Fy is achieved by selecting V20 along the +q-axis, 

while an increase in Fx and decrease in Fy is achieved by 

selecting V20 along the +d-axis. Similarly, a decrease in Fx 

and an increase in Fy is achieved by selecting the vector along 

the −d-axis while a decrease in both Fx and Fy is achieved by 

selecting the vector along −q-axis. The required voltage 

vectors for other quadrantal positions of ir1 can be worked out 

in a similar manner. Note that quadrantal position gets 

replaced by sextant in a three-phase implementation with six 

available non-trivial voltage vectors. 

The previous now suggests a three-dimensional switching 

table. Let s4 be an indicator of the quadrantal position of the 

rotor current vector. Then, we construct a switching table 

S(s4,sx,sy). Letting <1>, <2>, <3> and <4> denote the voltage 

vectors along the +d, +q, −d and −q axes, the switching table 

is as follows (a two-dimensional representation of the table is 

used to fit on the page) : 

Table 1. The switching table for the selection of quadrupolar 

voltage vectors, depending on the indicator variables mentioned in 

the text. 

s4 \ sx, sy 1,1 1,2 2,1 2,2 

1 <2> <1> <3> <4> 

2 <3> <2> <4> <1> 

3 <4> <3> <1> <2> 

4 <1> <4> <2> <3> 

    

We now summarize the algorithm presented here in the form 

of a code. I have written the code in Matlab since it is 

extremely similar to English prose and can be understood by 

all the readers.  

01  if X>x_tol 

02   F_xref = -F_set; 

03  elseif X<-x_tol 

04   F_xref = F_set; 

05  else 

06   F_xref = 0; 

07  end 

08  if F_x<F_xref 

09   s_x = 1; 

10  else 

11   s_x = 2; 

12  end 

% Similar steps for y in place of x 

13  if i_r1d>=0 && i_r1q>=0 

14   s_4 = 1; 

15  elseif i_r1d<0 && i_r1q>=0 

16   s_4 = 2; 

17  elseif i_r1d<0 && i_r1q<0 

18   s_4 = 3; 

19  else 

20   s_4 = 4; 

21  end 

Thereafter the switching table is defined as follows : 

22  ST2 = zeros(4,2,2); % initialization 

23  ST2(1,1,1) = V22; 

% Here V21 to V24 denote <1> to <4> of 

Table 1. We define other entries of ST2 

for the other values of s_4, s_x and s_y 

following Table 1. 

Finally, the selection of voltage vector given the indicators is 

one more line of code :  

24 V20 = ST2(s_4,s_x,s_y); 

A similar switching table for flux and torque of course 

controls the selection of the dipolar voltage vector. We have 

thus presented an algorithm for the selection of the inverter 

switching state in every interval basis the flux, torque and 

positional requirements. 

IV. ADDITIONAL OPTIONAL CONTROL BLOCKS 

The core of the control block is as given in Section III; now 

we consider two additional blocks which are optional but 

might be of considerable utility. The first block is relevant if 

there are significant periods when the rotor is quiescent 

automatically i.e. in the absence of control. The algorithm in 

its present form does not have an option of selecting zero 

quadrupolar voltage vector. Even if the rotor is automatically 

quiescent near the origin, then also the inverters keep 

switching back and forth. We can remedy this by defining a 

small threshold value Ftol and then replacing line 24 of 

Section III with the following algorithm :  

01  F_xerr = F_x-F_xref; 

02  F_yerr = F_y-F_yref; 

03  F_err = sqrt(F_xerr^2+F_yerr^2); 

04  if F_err<F_tol 



05   V20 = 0; 

06  else 

07   V20 = ST2(s_4,s_x,s_y); 

08  end 

This block is optional because automatically quiescent rotor 

does not occur if say the control is being used to lift its weight 

against gravity.  

The second optional block is required when there is very little 

intrinsic damping in the system i.e. γ is very low. Then, we 

can synthesize a damping force from the controller itself. For 

this we define two reference forces Fset1 and Fset2 instead of a 

single Fset, and define a (possibly zero) velocity threshold vtol. 

Then we replace lines 01 to 07 of Section III with the 

following : 

09  if X>x_tol 

10   F_1 = -F_set1; 

11  elseif X<-x_tol 

12   F_1 = F_set1; 

13  else 

14   F_1 = 0; 

15  end 

16  if v_x>v_tol 

17   F_2 = -F_set2; 

18  elseif v_x<-v_tol 

19   F_2 = F_set2; 

20  else 

21   F_2 = 0; 

22  end 

23  F_xref = F_1+F_2; 

An identical code block for Y of course has to be constructed 

also. The block diagram of the proposed control scheme is 

shown in Fig. 2. The core block of Section III is shown in 

black and the optional blocks of this Section are shown in 

grey. 

V. SIMULATION RESULTS 

We now present the simulation results of the control strategy. 

The parameter values I have chosen are as follows : τr1 = τs1 = 

1, τs2 = 1/2, ω = 50, δ1 = 0.49, δ2 = 0.34, r = 0.2, m = 1 and g = 1 

(if gravity is present). The two-phase motor is considered 

here. Magnitude of the dipolar voltage vector is 400 while 

that of the quadrupolar vector is 300. The setpoints and 

tolerances are |ψs1|set = 4, |ψs1|tol = 0.02, Γset = 1.2, Γtol = 0.01, 

 
 

Figure 2 : Placed here due to outsize. Block diagram for the proposed control strategy. M is the motor. INV1 is the inverter 

supplying the dipolar channel – it is controlled via standard DTC. INV2 is of course the quadrupolar one, whose actions 

are governed by the switching table ST2. A right-angled triangle denotes a comparator – the quantities to be compared 

enter along the hypotenuse while the output comes out of the vertex. The comparators are either binary (decide whether a 

> b or otherwise) or ternary (decide whether a > b, a < −b or otherwise). The details are given in the bulk text. The rectangles 

are miscellaneous calculators whose function is indicated by the symbol and explained in the text. Black elements form the 

core of the strategy (Section III) while grey elements are the optional blocks discussed in Section IV. It is instructive to 

compare this diagram with Fig. 1 and typical block diagrams of FOC and DTC of induction motors, for example from 

Reference [4]. 

 



xtol = ytol = 0.01. The initial condition (IC) on dipolar flux is 

ψs1(0) = 4+j0, the IC on rotor current is ir1(0) = −0.036−j0.31, 

the ICs on is2 are zero, the ICs on displacement are X(0) = Y(0) 

= 0.03 and the ICs on velocity are zero. These all things 

remain invariant from run to run. Since several parameters 

have been set to unity, the units are not SI but arbitrary. For 

all simulations we have set the switching interval to be 

T = 0.0003 and run for ten lakh switching intervals.  

Simulation is carried out in the following manner. We 

prescribe initial values of ψs1, ir1, is2, X, vx, Y and vy. These 

lead to initial values of the indicator variables for classical 

DTC as well as the new indicators s4, sx and sy. These values 

act as initial conditions for the first switching interval. Then, 

we use the conventional switching table for DTC to select the 

dipolar voltage vector together with the new switching table 

ST2 to select the quadrupolar voltage vector. These voltage 

vectors are held during the switching interval. Given the 

voltage vector, we use (9) and (10) to update ψs1, ir1 and is2 to 

the end of the interval, and use (13) to update X, vx, Y and vy 

to the end of the interval. We recalculate the torque and forces 

at the end of the interval using (5) and (8c). We use the new 

X and Y to calculate the new references Fx,ref and Fy,ref and 

then compare them with the new forces Fx and Fy to update 

the indicator variables. We are now ready to select the voltage 

vectors for the next switching interval, and the process keeps 

on repeating, moving forward in time.  

For the first run, the force setpoint is Fset = 2, the optional 

block for zero quadrupolar voltage is present but that for 

electrical damping is absent. We insert high mechanical 

damping γ = 5 since the voltage source inverter introduces 

delay into the system [28,29] and damping is necessary for 

stability. The time traces of X and Y are shown in Fig. 3. 

 

Figure 3 : Rotor displacements vs. time in presence of gravity 

with mechanical damping.  

Here and in all subsequent plots we show X in blue and Y in 

green. We can see that X and Y are both immediately 

stabilized. The rotor position acquires a constant negative y-

component on account of the gravity. A non-zero x-

component also arises due to coupling inherent in the system. 

Although time trace of torque is not displayed, the effectivity 

of classical DTC has been verified in each case. We now 

insert the electrical damping block choosing Fset1 = 1.2, Fset2 

= 1.0 and vtol = 0.01. Mechanical damping γ is reduced to zero. 

The result, Fig. 4, is similar to Fig. 3. 

 

 

Figure 4 : Same as Fig. 3 except with electrical damping 

synthesized through the controller. 

We see that the motor is completely stable even in this case. 

 

VI. BEAM-INTERCEPTION  IMPLEMENTATION 

The realization of the control algorithm in terms of binary 

position sensors is presented in this Section. Instead of the 

continuous position sensor as assumed heretofore, we have 

four laser beams fixed in the stator frame and running parallel 

to the motor axis. Let the beams be generated by torches at 

the top of the motor and received by photodetectors at the 

bottom. The distance between torch and receiver must be 

greater than the height of the rotor, which lies in the 

intervening space. The setup is shown in schematic form in 

Fig. 5.  

 

Figure 5 : Beam-interception implementation of the control 

strategy. The red lines denote the laser beams, travelling 

from the torches to the detectors. They are fixed in stator 

frame. Each detector is ON (green) if it receives the beam and 

OFF (grey) if the beam is blocked. Beam 2 is directly behind 

beam 4 in this view. A positive x-displacement of the rotor 

has resulted in its blocking beam 1 and turning the 

corresponding detector OFF. 

 

The x-y coordinates of the four beams are (r + xtol,0), (0, 

r + ytol), (−r − xtol,0) and (0,−r − ytol) where r of course is the 

rotor radius. We label these beams as 1 to 4 respectively. 

Evidently, if the rotor is at its default position then all four 

beams bypass the rotor and travel smoothly from the torch to 

the detector. Displacements of the rotor cause it to intercept 



the various beams. We program the controller as follows, 

letting d1 to d4 denote the state variables for detectors 1 to 4 

and letting the value 1 denote ON and 2 OFF. Lines 1 to 7 of 

Section III become 

01  if d1==2 

02   F_1 = -F_set1; 

03  elseif d3==2 

04   F_1 = F_set1; 

05  else 

06   F_1 = 0; 

07  end 

An analogous logic of course holds for the y-direction. The 

optional damping block of Section IV can also be 

implemented in an approximate manner. We replace the 

continuous variables vx and vy with the variables px and py 

which are the signs of vx and vy. Thus, px and py can only have 

two values – positive or 1 and negative or 2. We realize that, 

for small displacements, a transition of detector 1 from OFF 

to ON indicates that the rotor is moving leftward while a 

transition of detector 3 from OFF to ON implies that the rotor 

is moving rightward. Hence we let these transition events 

define these two motion directions. In algorithmic terms, 

letting the integer the integer ii denote the current switching 

interval, so that ii-1 obviously denotes the previous 

switching interval, we have 

08  if d1(ii)==1 && d1(ii-1)==2  

% detects a transition 

09   p_x(ii) = 2; 

10  elseif d3(ii)==1 && d3(ii-1)==2 

11   p_x(ii) = 1; 

12  else 

13   p_x(ii) = p_x(ii-1); 

14  end 

The force reference commands are 

15  if p_x==1 

16   F_2 = -F_set2; 

17  else 

18   F_2 = F_set2; 

19  end 

Of course, similar algorithms hold true for the y-direction. It 

can be shown that for an oscillatory motion, this 

implementation of the damping block generates a positive 

damping for part of the cycle and a negative damping (driver) 

for the rest of the cycle. With properly chosen parameter 

values, the positive can outweigh the negative and stabilize 

the rotor. This is of course a jugaad solution constructed from 

the existing extremely simple apparatus – a different and 

more accurate method for measuring the sign of vx and vy, 

such as detecting the sign of induced emf in an eddy current 

sensor, can also be used. 

For the simulations, we now replace the induction motor by a 

permanent magnet synchronous one. We assume that the 

rotor does not have pole saliency [4], so that the direct and 

quadrature axes inductances are equal and the space phasor 

model is applicable. Then, we can replace the dynamical 

variable Kr1 with the algebraic equation Kr1 = K0 ejωt where 

K0, the strength of the rotor current, is a constant. As usual, 

the dipolar channel controls the torque – DTC protocols for 

this are well established [5,6] and we ignore that part of the 

dynamics. The quadrupolar channel works just as before, 

except that we use the detector states to generate the reference 

forces, as described above.  

For these simulation runs, we fix Kr0 = 4 and xtol = ytol = 0.01. 

Gravity is present along the −y-axis as before. The condition 

for whether the rotor intercepts (respectively bypasses) each 

beam is that the beam must lie a distance less (respectively 

greater) than r away from the centre of the rotor. First we take 

mechanical damping γ = 1 with no electrical damping (Fig. 6) 

and then γ = 0.01 (which causes instability in the absence of 

electrical damping) with electrical damping based on the 

beam transitions (Fig. 7). For this, we define Fset1 = 2 and 

Fset2 = 0.2.  

 

Figure 6 : Rotor displacements vs. time in the beam-

interception interpretation with mechanical damping. 

 

Figure 7 : Same as Fig. 6 except with electrical damping 

synthesized by the controller. 

The effectivity of the strategy is clearly seen; mechanical 

damping provides a smoother response than the ad hoc 

electrical damper block. 

VII. CONCLUSIONS 

In this work we have seen a new two-limit control strategy of 

a magnetically levitated motor. Two 2-phase 3-level inverters 

or two 3-phase 2-level inverters are sufficient to achieve 

decoupled torque and position control of the rotor. The 

position sensor can be implemented in a binary form using 

laser beams which are blocked by the rotor’s eccentricity.  

Here we saw a two-dimensional motor model. We conjecture 

that a shaft mounted on two of the proposed bearingless 

motors, one at each end, can exhibit strong rotational stability 

even if the rotational angles are not measured. Rigorous 

demonstration of this is currently ongoing.  

I hope that this control strategy can also be extended to 

maglev trains which are powered by linear induction and 

synchronous motors [30,31]. There too, a two-channel stator 



winding with comparator-based control should enable a 

robust control architecture with decoupled and accurate 

control of the traction and the position. 

Much more research has to be carried out to determine the 

optimal values of the various parameters, set points and 

tolerances which can lead to largest possible switching 

period, maximum use of zero voltage vectors, minimum 

inverter ratings and smallest possible displacement 

oscillations. The proposed drive also needs to be built in the 

laboratory. We leave these issues for future study. 

REFERENCES 

[1] I. Takahashi and T. Noguchi, “A New quick-response and high-
efficiency control strategy of an induction motor,” IEEE Transactions 
on Industry Applications 22 (5), 820-827 (1986) 

[2] M. Depenbrock, “Direct self control of inverter fed induction 
machine,” IEEE Transactions on Power Electronics 4 (3), 420-429 
(1988) 

[3] F. Blaschke, “The Principle of field orientation as applied to the new 
closed-loop transvector control systems for rotating field machines,” 
Siemens Review 39 (2), 217-220 (1972) 

[4] R. Krishnan, “Electric Motor Drives – Modeling, Analysis and 
Control,” PHI Learning Private Limited, Nayi Dilli (2010) 

[5] L. Zhong, M. F. Rahman, W. Y. Hu and K. W. Lim, “Analysis of direct 
torque control in permanent magnet synchronous motor drives,” IEEE 
Transactions on Power Electronics 12 (3), 528-536 (1997) 

[6] M. F. Rahman, L. Zhong and K. W. Lim, “A Direct torque controlled 
interior permanent magnet synchronous motor drive with field 
weakening,” IEEE Transactions on Industry Applications 34 (6), 1246-
1253 (1998) 

[7] G. S. Buja and M. P. Kazmierkowski, “Direct torque control of PWM 
inverter-fed ac motors – a survey,” IEEE Transactions on Industrial 
Electronics 51 (4), 744-757 (2004) 

[8] DJ Griffiths, “Introduction to Electrodynamics,” Third Edition, 
Pearson, Upper Saddle River, New Jersey, USA (2005) 

[9] F. C. Moon and P. Z. Chang, “High speed rotation of magnets on high-
Tc superconducting bearings,” Applied Physics Letters 56 (4), 397-399 
(1990) 

[10] R. F. Post and D. D. Ryutov, “Ambient temperature passive magnetic 
bearings : theory and design equations,” Preprint, UCRL-JC-129214 
(1997) 

[11] T. A. Lembke, “Design and analysis of a novel low loss homopolar 
electrodynamic bearing,” Doctoral Thesis, Royal Institute of 
Technology, Stockholm, Sweden (2005) 

[12] V. Kluyskens, B. Dehez and H. B. Ahmed, “Dynamical 
electromechanical model for magnetic bearings,” IEEE Transactions 
on Magnetics 43 (7), 3287-3292 (2007) 

[13] N. Amati, X. de Lepine and A. Tonoli, “Modeling of electrodynamic 
bearings,” Journal of Vibration and Acoustics 130 (6), 061007 (2008) 

[14] V. Kluyskens, C. Dumont and B. Dehez, “Description of an 
electrodynamic self-bearing permanent magnet machine,” IEEE 
Transactions on Magnetics 53 (1), 8100409 (2017) 

[15] W. Bauer and W. Amrhein, “Electrical design considerations for a 
bearingless axial force/ torque motor,” IEEE Transactions on Industry 
Applications 50 (4), 2512-2522 (2014) 

[16] W. Amrhein, W, Gruber, W. Brauer and W. Reisinger, “Magnetic 
levitation systems for cost-sensitive applications – some design 
aspects,” IEEE Transactions on Industry Applications 52 (5), 3739-
3752 (2016) 

[17] H. Sugimoto, S. Tanaka, A. Chiba and J. Asama, “Principle of a novel 
single-drive bearingless motor with cylindrical radial gap,” IEEE 
Transactions on Industry Applications 51 (5), 3696-3706 (2015) 

[18] S. Zhang and F. L. Luo, “Direct control of radial displacement for 
bearingless permanent magnet type synchronous motors,” IEEE 
Transactions on Industrial Electronics 56 (2), 542-552 (2009) 

[19] J. Asama, T. Oi, T. Oiwa and A. Chiba, “Simple driving method for a 
2-DOF controlled bearingless motor using one three-phase inverter,” 
IEEE Transactions on Industry Applications 54 (5), 4365-4376 (2018) 

[20] E. Severson, S. Gandikota and N. Mohan, “Practical implementation of 
dual-purpose no-voltage drives for bearingless motors,” IEEE 
Transactions on Industry Applications 52 (2), 1509-1518 (2016) 

[21] V. F. Victor, F. O. Quintaes, J. S. B. Lopes, L. D. S. Junior, A. S. Lock 
and A. O. Salazar, “Analysis and study of a bearingless ac motor type 
divided widing based on a conventional squirrel cage induction motor,” 
IEEE Transactions on Magnetics 48 (11), 3571-3573 (2011) 

[22] S. Kobayashi, M. Ooshima and M. Nasiruddin, “A Radial position 
control method of bearingless motor based on d-q axis current control,” 
IEEE Transactions on Industry Applications 49 (4), 1827-1835 (2013) 

[23] A. Nabae, I. Takahashi and H. Akagi, “A New neutral-point-clamped 
PWM inverter,” IEEE Transactions on Industry Applications 17 (5), 
518-523 (1981) 

[24] R. L. Maresca, “A General method for designing low temperature-drift, 
high bandwidth, variable reluctance position sensors,” IEEE 
Transactions on Magnetics 22 (2), 118-123 (1986) 

[25] M. D. Noh, S. R. Cho, J. H. Kyung, S. K. Ro and J. K. Park, “Design 
and implementation of a fault-tolerant magnetic bearing system for a 
turbomolecular vacuum pump,” IEEE/ASME Transactions on 
Mechatronics 10 (6), 626-631 (2005) 

[26] A. Schammass, R. Herzog, P. Buehler and H. Bleuler, “New results for 
self-sensing active magnetic bearings using modulation approach,” 
IEEE Transactions on Control Systems Technology 13 (4), 509-516 
(2005) 

[27] W. Gruber, M. Pichler, M. Rothboeck and W. Amarhein, “Self-sensing 
active magnetic bearing using 2-level PWM current ripple 
demodulation,” Proceedings of the Seventh International Conference 
on Sensing Technology, 587-591 (2013) 

[28] R. H. Rand, “Lecture Notes on Nonlinear Vibrations,” available 
electronically at 
http://audiophile.tam.cornell.edu/randdocs/nlvibe52.pdf  

[29] M. Davidow, B. Shayak and R. H. Rand, “Analysis of a remarkable 
singularity in a nonlinear DDE,” Nonlinear Dynamics 90 (1), 317-323 
(2017) 

[30] I. Takahashi and Y. Ide, “Decoupling control of thrust and attractive 
forces of a linear induction motor using space vector control inverter,” 
IEEE Transactions on Industry Applications 29 (1), 161-167 (1993) 

[31] A. K. Rathore and S. N. Mahendra, “Direct secondary flux oriented 
control of linear induction motor drive,” Proceedings of the 2006 IEEE 
International Conference on Industrial Technology, 1586-1590 (2006)    

 

 

http://audiophile.tam.cornell.edu/randdocs/nlvibe52.pdf
http://audiophile.tam.cornell.edu/randdocs/nlvibe52.pdf

