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Abstract. In this work we look at aircraft flight from a dynamical sys-
tems perspective. Our foundation is a recently proposed closed form non-
linear model for the pitch plane or longitudinal motions of an aircraft.
Exploiting a time scale separation inherent in the problem, we (a) show
how an engineering flight dynamics model reduces to the Lanchester-
Zhukovsky (LZ) glider model in the appropriate limit, (b) propose an
extended version of the LZ model to include thrust and movable hor-
izontal stabilizer, (c) obtain an explicit relation between the stabilizer
deflection and the trimmed airspeed, and (d) derive fully explicit alge-
braic approximations of the short period and phugoid modes. Further,
by combining aircraft with dynamical systems, we potentially introduce
the technical aspects of airplane motion to a wide audience.

Keywords: Flight dynamics, Lanchester-Zhukovsky glider model, Short
period mode, Phugoid mode

1 Introduction

Although flight dynamics and dynamical systems theory are well-established dis-
ciplines, the two have virtually zero overlap. A researcher in nonlinear dynamics
outside of aerospace engineering typically has little idea of either the equations
governing airplane motion or their solution structures. This probably happens
because the Literature approach to flight dynamics draws heavily on data ta-
bles, obtained from experiments or computational fluid dynamics simulations.
The data table dependence is common to both the linearized approach pioneered
by George Bryan [1] and the nonlinear approach pioneered by Craig Jahnke [2],
both approaches used in research papers and textbooks too numerous to cite.
The data tables are aircraft-specific; further, for many aircraft such as Boeing
777 and Airbus A320, the tables are classified [3], [4]. To the best of our knowl-
edge, only a few fighter jet models are public domain [5]–[7].

The only overlap between flight dynamics and more general dynamical sys-
tems theory is through the Lanchester-Zhukovsky (LZ) glider model, which de-
scribes the motions of an aerial vehicle having neither thrust nor any control
over its pitch (note that a glider, as used in professional soaring, lacks thrust
but does have pitch control). Letting V be the speed of the glider and η the
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angle which its flight path makes with the horizontal, the (non-dimensionalized)
model equations are

V̇ = − sin η −DV 2 (1a)

V η̇ = − cos η + V 2. (1b)

Here the trigonometric terms represent the effect of gravity and the V 2 terms
represent the effects of drag and lift. This equation, proposed independently
in the late 19th to early 20th century by Frederick Lanchester [8] and Nikolai
Yegorovich Zhukovsky [9], appears in a few textbooks on dynamical systems, for
example Refs. [9], [10]. Among these, Ref. [9] presents a detailed stability and
bifuraction analysis, finding quite a rich structure.

Equation (1) does not however make an appearance in the dedicated flight
dynamics Literature, so the question of how or even whether the professional-
grade models reduce to (1) in the appropriate limit is left unresolved. A relatively
recent attempt [11] to derive one from the other appears contrived or even er-
roneous since the lift and drag coefficients are taken to depend on α, α is found
to be sinusoidal and still the coefficients are treated as constants.

The demonstration of the reduction of an engineering flight dynamics model
to the LZ glider model is one of the aims of the present work. The model we
use is a fully explicit nonlinear equation of motion proposed by us last year [12],
which replaces the data tables with closed form algebraic expressions. In the
course of the derivation we also present an extension of the LZ model which in-
cludes thrust and movable horizontal stabilizer. Further, we obtain the algebraic
approximations of the short period and phugoid modes in the model [12].

2 Closed form nonlinear model

The explicit nonlinear dynamical model proposed last year is briefly summarized
in this Section. It features differential equations for five variables – the forward
displacement of the aircraft y, the vertically upward displacement z, the speed V ,
the angle of elevation of the flight path η [i.e. η = arctan(Vz/Vy)] and the pitch
θ defined as the angle between the horizontal and the fuselage axis of symmetry.
The angle of attack α is defined as α = θ−η. The equations feature two quantities
which are inputted by the pilot (or autopilot) and can vary continuously – the
thrust T and the downforce f̄p applied at the tail. Related to the latter is the
angle θE made by the tail with the horizontal (we have assumed the tail to
consist of one movable piece). Among the parameters are the lift constants KC

and KE for the wings and the tail (K is basically the constant of proportionality
after the dependences on V 2 and α are factored out) and the drag constant C
of the whole aircraft (the constant of proportionality after the V 2 dependence
of parasitic drag is factored out). There are the mass of the aircraft m and the
moment of inertia I about an axis passing through the centre of mass (CM).
There are also the distances d̄1 and d̄2 between the aircraft CM and the centres
of pressure (the point at which the lift effectively acts) of the wings and the tail,
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and h̄, the distance between the fuselage symmetry axis and the line of action
of the thrust. Some parameters have overhead bars : if for a typical airplane,
quantity X happens to be negative as per our sign conventions then we define
X̄ = −X and use X̄ in the equations so that the parameters there may be
positive. Finally, we have a damping constant Γ for rotational motions. The
geometry of the airplane as well as the forces acting on it are shown in Fig. 1.

Fig. 1. Schematic diagram of the airplane showing the geometry as well as the forces
on it. mg is the weight, acting at B, the aircraft CM. F is the aerodynamic force (lift
plus induced drag) on the wings; it acts at C, their centre of pressure. D is the parasitic
drag, assumed to act at B. T is the thrust. f̄p is the aerodynamic force at the tail E.

The equation of motion obtained in Ref. [12] is shown in a schematic form in
Fig. 2, where the significance of each term is briefly indicated. For more details
including the derivation, we must refer to Ref. [12]. This figure will help us to
keep track of the various terms as we analyse them in the next Section.

3 Stability analysis

3.1 Reformulation and simplification of the model equations

The original form of the model equation, shown in Fig. 2, treats as a fundamental
quantity the force f̄p commanded at the tail by the pilot. For stability analysis
however it is customary to consider as fundamental the angle between the tail and
the fuselage. This angle is called the deflection. Indeed, an uncontrolled glider as
described by (1) perforce has the deflection constant, the value assigned during
the design and manufacturing phase. As in Ref. [12] we consider an all-moving
tail; we treat its deflection δE = −δ̄E as a basic variable.

The relation between the deflection of the tail and the force applied on it is

f̄p =
KEV

2

2
sin 2

(
η − θ + δ̄E

)
. (2)
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Fig. 2. Schematic representation of the equation of motion derived in Ref. [12].

Using this together with α = θ − η in the last four equations of Fig. 2, we get

V̇ =
1

m


KCV

2

4
(cos 3α− cosα) +

KEV
2

4

[
cos 3

(
δ̄E − α

)
− cos

(
δ̄E − α

)]
+

T cosα−mg sin η − CV 2

 ,

(3a)

η̇ =
1

m


KCV

4
(sin 3α+ sinα)− KEV

4

[
sin 3

(
δ̄E − α

)
+ sin

(
δ̄E − α

)]
+

T sinα

V
− mg cos η

V

 ,

(3b)

θ̇ = ω, (3c)

ω̇ =
1

I

{
−Γω − KC d̄1V

2

2
sin 2α+

KE d̄2V
2

2
sin 2

(
δ̄E − α

)
cos δ̄E + T h̄

}
. (3d)

Now, our purpose in this Article is to get an overview of the airplane’s dy-
namics rather than derive formulae having maximum accuracy. So we perform
three simplification steps on the above equation. First we drop the terms featur-
ing KE in (3a),(3b). Because of the much larger area, the wings exert far larger
forces than the tail. The KE term is not ignorable in (3d) because d̄2 >> d̄1,
in such a manner that the second and third terms in this RHS are of roughly
equal size. Next we note that α and δ̄E −α are the angles of attack at the wings
and tail respectively; for the elements not to stall, the angles must be small.
Accordingly we Taylor expand (3) to the lowest nonzero order in these quanti-
ties. Finally we ignore the term T h̄ in (3d). In a typical jetliner the engines are
only slightly below the fuselage centreline and their torque is a small fraction of
those of the wings and tail. Moreover, thrust torque is not a significant factor
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influencing airplane dynamics, and our neglecting this term does not affect our
fundamental understanding of them.

With these simplifications, (3) reads

V̇ =
−KCV

2α2 − CV 2 + T −mg sin η

m
, (4a)

η̇ =
KCV

2α+ Tα−mg cos η

mV
, (4b)

θ̇ = ω, (4c)

ω̇ =
−Γω −KC d̄1V

2α+KE d̄2V
2
(
δ̄E − α

)
I

. (4d)

This is the equation set which we shall analyse in the remainder of this Section.

3.2 Separation of time scales, fast dynamics

It so happens that, for many airplanes at least, α evolves much faster than V
and η. Accordingly, we combine (4c) and (4d) to form an equation for θ̈ and
then subtract (4b) from the resultant to formulate an equation for α̈. In that
equation we set V̇ = η̇ = 0. This yields

α̈+

(
Γ

I
+

KCV

m
+

T

mV

)
α̇+

((
KC d̄1 +KE d̄2

)
V 2

I

)
α =

KE d̄2V
2δ̄E

I
, (5)

which is a damped harmonic oscillator equation with an inhomogeneous term.
The particular or steady state solution is

αp = α∗ =
KE d̄2

KC d̄1 +KE d̄2
δ̄E , (6)

(we have introduced α∗ here for a reason to be explained shortly). The homoge-
neous solutions are decaying oscillatory if

Γ

I
+

KCV

m
+

T

mV
< 2

(
KC d̄1 +KE d̄2

I

)1/2

V, (7)

and decaying non-oscillatory otherwise. In the oscillatory case, the characteristic
exponents of the homogeneous solution are

λ1,2 = −1

2

(
Γ

I
+

KCV

m
+

T

mV

)
±j

1

2

√
4
(
KC d̄1 +KE d̄2

)
V 2

I
−
(
Γ

I
+

KCV

m
+

T

mV

)2

,

(8)
(j =

√
−1) while the exponents in the other case can be derived easily from (5).

We can see that the angle of attack gravitates to the particular solution
α = αp in time. Since αp is independent of V and η, we can identify it as α∗,
the global fixed point of (4) [hence its introduction in (6)]. The homogeneous
solutions of (5) depend on V ; if we set V = V ∗ (global fixed point) in (8), then
λ1,2 become two of the stability eigenvalues governing perturbations from the
fixed point. The normal mode associated with α is called the short period mode;
for the model (3), (5) is its algebraic approximation.
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3.3 Slow dynamics

Having solved the fast system, we must now plug the solution into the slow one.
In this case the fast system has a particularly simple solution – rapid approach
of α(t) to the fixed point α∗. Hence, we substitute α = α∗ in (4a),(4b). Doing
so we find

V̇ =
−
(
KCα

∗2 + C
)
V 2 + T −mg sin η

m
, (9a)

η̇ =
KCV

2α∗ + Tα∗ −mg cos η

mV
. (9b)

The first thing to note is that, if we define D = KCα
∗2 +C and set T = 0 here,

then we recover (1) [upto constants]. Thus we can think of (9) as the extension of
the LZ model with thrust and movable stabilizer included. We have also formally
demonstrated the reduction of the engineering flight dynamics model, Fig. 2 or
(3), to the LZ model.

To find the fixed points of (9), we must solve (recall D = KCα
∗2 + C)

−DV ∗2 + T −mg sin η∗ = 0 (10a)

KCV
∗α∗ +

Tα∗

V ∗ − mg cos η∗

V ∗ = 0. (10b)

Some algebraic manipulations yield a quadratic for V ∗2 :(
K2

Cα
∗2 +D2

)
V ∗4 +

(
2KCα

∗2T − 2DT
)
V ∗2 + T 2

(
1 + α∗2)−m2g2 = 0, (11)

which has the solution

V ∗ =

(D −KCα
∗2)T ±

√
T 2(KCα∗2 −D)

2 − (K2
Cα

∗2 +D2) (−m2g2 + T 2(1 + α∗2))

K2
Cα

∗2 +D2

1/2

.

(12)
The positive sign turns out to be appropriate here. Given this, η∗ can be easily
obtained from either (10a) or (10b).

Now (12), though exact, is cumbersome in appearance. A much simper form
results if we substitute α∗ from (6) and then retain only the largest terms. This
form can also be obtained from a static stability analysis of the model (3). We
find

V ∗ =

√
mg(KC d̄1 +KE d̄2)

KCKE d̄2δ̄E
. (13)

Substituting this into (10a) and assuming η∗ to be small, we get for the trajectory
elevation

η∗ = −C
KC d̄1 +KE d̄2
KCKE d̄2δ̄E

− KE d̄2δ̄E
KC d̄1 +KE d̄2

+
T

mg
. (14)

We have thus obtained explicit relations for the trimmed airspeed and climb
angle in terms of the stabilizer deflection and the set power – relations which,
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though of considerable importance in aircraft operation, appear not to exist in
Literature.

The fixed point analysis complete, we come now to the stability. Linearizing
(9), we find that perturbations ∆V and ∆η from V ∗ and η∗ satisfy the system

d

dt

[
∆V
∆η

]
=

1

m

[
−2DV ∗ −mg cos η∗

KCα
∗ + mg cos η∗−Tα∗

V ∗2
mg sin η∗

V ∗

] [
∆V
∆η

]
, (15)

whence the eigenvalues are

λ3,4 =
1

m

−DV ∗ +
mg sin η∗

2V ∗ ± j

√√√√√√√
mg cos η∗

2

[
KCα

∗ +
mg cos η∗ − Tα∗

V ∗2

]
− 2D2V ∗2 − 3Dmg sin η∗ − m2g2sin2η∗

2V ∗2

 .

(16)
These eigenvalues describe the phugoid mode; either (9) or (15) is its algebraic
approximation depending on whether we seek a linear or nonlinear form.

4 Results

We now plot the modal eigenvalues as functions of speed. For this, we import the
parameter values from Ref. [12], which are given in Table 1. As already stated in
Ref. [12], these values are realistic for a largish narrow body airliner like Airbus
A321 but do not actually correspond to the parameters for any one particular
airplane. The values of m and T given in Table 1 are the maximum value which
they can attain – lower values are of course possible.

Table 1. Parameter values for the model plane which we shall use here.

Parameter m g KC KE T d̄1 d̄2 h̄ I γ

SI Unit Value 105 9.8 1500 150 3× 105 1 25 0.5 64m 192m

We consider a fixed elevation of η∗ = 6◦ and V ∗ ranging from 60 to 200
m/s (the entire speed range requires less than the maximum thrust) and show
the short period and phugoid eigenvalues in Figs. 3 and 4. The short period
mode has a period of a couple of seconds and damps out rapidly while the
phugoid mode has a period of minutes and damps very slowly. Both of these
are in agreement with what is known for real aircraft [13], [14]. In the phugoidal
eigenvalue, a strong 1/V ∗ trend can be seen by comparing the values at V ∗ = 100
and V ∗ = 200 m/s; this is consistent with Lanchester’s pioneering but basic
analysis [8].

To conclude this calculation it remains only to verify that the separation of
time scales which we assumed at the beginning holds true. We note that the
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Fig. 3. Short period eigenvalue as V ∗ is varied, for η∗ fixed at 6◦. Upto a speed of 72
m/s, both the eigenvalues are real. The solid blue line denotes one of them and the
solid green line the other. Beyond 72 m/s, the eigenvalues are a complex pair. In this
regime, the solid blue line shows the real part of one of them and the dashed blue line
the imaginary part. Since complex eigenvalues come in conjugate pairs, the other one
perforce has the same real part and the negative imaginary part.

Fig. 4. Phugoid mode eigenvalue as V ∗ is varied, for η∗ fixed at 6◦. The solid line
shows the real part and the dashed line the imaginary part of one eigenvalue. Since
complex eigenvalues come in conjugate pairs, the other one perforce has the same real
part and the negative imaginary part.
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y-axis scale in Fig. 3 is 50 times greater than in Fig. 4, so our assumption is
prima facie bona fide.

5 Discussion and conclusion

In this Article, we have exploited a recently proposed explicit nonlinear model of
an aircraft to analyse flight dynamics from a nonlinear science perspective. This
analysis has yielded a few results which are novel even in the field-specific Liter-
ature. An example is the nonlinear phugoid equation (9). Although it contains
just a couple more terms beyond (1), I have never seen an explicit augmentation
of that equation to include thrust and controllable elevator – the two elements
which separate a jetliner from a dummy glider. Also novel are the relations (13)
and (14) connecting the thrust and stabilizer deflection to the trimmed airspeed
and climb angle.

The time scale separation is of course well known in engineering Literature.
The derivation of algebraic (often called “literal”) expressions for the normal
modes usually starts from the linearized equations and then exploits the time
scale separation. Only recently however [15] was this derivation was given in a
full and rigorous manner. With respect to the short period mode, the stiffness
of that mode was traditionally taken to be different from the change in moment
with respect to angle of attack; this was corrected in Ref. [14]. In our model, the
two are identical from the outset. With respect to the phugoid mode, reference
[15] was the first to recognize that when the ∆α (defined as α− α∗) equation is
written in a sufficiently general way, then ∆α does not decay in time to zero (as
assumed in almost one hundred years of aerospace Literature) but to a constant
(at the fast level) which depends on ∆V . This constant must then be accounted
for while writing the ∆V,∆η system. In this Article, the simplifications made in
going from (3) to (4) resulted in the ∆α residual being zero (α∗ is independent of
V ∗ and η∗). A more accurate treatment of (3) would however have retained this
residual in the nonlinear phugoid equation (9). It is in my opinion a significant
virtue of our explicit aircraft model that it automatically yields the correct
expressions for the various normal modes without our having to take special
care to retain or drop certain terms.

The demonstration of the reduction of a professional-grade aircraft dynamic
model to the LZ glider model is again a novel contribution of this Article. While
the process here was smooth, the steps involved were not trivial. The simplifi-
cation of (3) to (4) was a straightforward removal of smaller contributions but
the rest hinged on two crucial factors : (a) the time scales of the α, α̇ and V, η
subsystems being widely separated, and (b) the solution for α being a constant
independent of V and η. If any one of these happened not to hold true, then (1)
would not have been a plausible reduced order model for (4).

In addition to proposing these novel results, our Article has the potential to
introduce aircraft dynamics to the wider nonlinear dynamics community. Future
work involves constructing the three-dimensional version of (3) and analysing
it to characterize all five normal modes. This can lead to considerable insight



10 B Shayak

regarding the relation between the aircraft design parameters and the stability
eigenvalues. Further, given that the LZ model itself has a rich bifuraction struc-
ture [9], the full three-dimensional aircraft model should be a very interesting
nonlinear dynamical system.

References

[1] G. H. Bryan, Stability in Aviation. Macmillan, London, UK, 1911.
[2] C. C. Jahnke, Application of dynamical systems theory to nonlinear aircraft

dynamics. Caltech, Pasadena, USA, 1990.
[3] N. E. Daidzic, “A total energy-based model of airplane overspeed takeoffs,”

International Journal of Aviation, Aeronautics and Aerospace, vol. 1, no. 3,
1, 2014.

[4] N. E. Daidzic, “Optimization of takeoffs on unbalanced field using take-
off performance tool,” International Journal of Aviation, Aeronautics and
Aerospace, vol. 3, no. 3, 3, 2016.

[5] M. H. Lowenberg and A. R. Champneys, “Shilnikov homoclinic dynamics
and escape from roll autorotation in an F4 model,” Philosophical Trans-
actions of the Royal Society A, vol. 356, no. 1745, 1998.

[6] U. Saetti and J. H. Horn, “Flight simulation and control using the JULIA
language,” AIAA Scitech Forum, 2022.

[7] N. K. Sinha and N. Ananthkrishnan, Advanced Flight Dynamics with El-
ements of Flight Control. CRC Press, Boca Raton, USA, 2017.

[8] F. W. Lanchester, Aerodonetics. Archibald Constable, London, UK, 1908.
[9] A. A. Andronov, A. A. Vitt, and S. E. Chaikin, Theory of Oscillations.

Addison Wesley, Reading, USA, 1966.
[10] S. R. Simanca and S. F. Sutherland, Mathematical Problem Solving with

Computers. 2002. [Online]. Available: https://www.math.stonybrook.edu/
∼scott/Book331/331book.pdf.

[11] A. V. Vlakhova, “On applicability limits of Zhukovsky’s model for gliding
flight,” Journal of Mathematical Sciences, vol. 146, no. 3, pp. 5811–5819,
2007.

[12] B. Shayak, S. Girdhar, and S. Malviya, “Model-based manoeuvre analysis
: A path to a new paradigm in aircraft flight dynamics,” Frontiers in
Aerospace Engineering, vol. 3, 1308872, 2024.

[13] D. A. Caughey, Introduction to Aircraft Stability and Control. 2011. [On-
line]. Available: https://courses.cit.cornell.edu/mae5070/Caughey 2011
04.pdf.

[14] N. K. Sinha and N. Ananthkrishnan, Elementary Flight Dynamics with an
Introduction to Bifuraction and Continuation Methods. CRC Press, Boca
Raton, USA, 2014.

[15] N. Ananthkrishnan and S. Unnikrishnan, “Literal approximations to air-
craft dynamic modes,” AIAA Journal of Guidance, Control and Dynamics,
vol. 24, no. 6, pp. 1196–1203, 2001.


